

Climate Smart Farming Practices for Sustainable food production

Ajay

M.Sc. Scholar, Department of Climate Change and Agricultural Meteorology, Punjab Agricultural University, Ludhiana, India

Corresponding Author Email: ajaysokhal0000@gmail.com

Abstract

Climate-smart farming practices provide an integrated pathway to sustain food production under increasing climate variability. The approach combines climate-resilient crop varieties, efficient water and nutrient management, and digital technologies to enhance productivity while reducing environmental footprints. Precision agriculture, smart sensors, and weather-based advisories improve input-use efficiency by 20–40% and stabilize yields by 10–30%. Soil carbon-enhancing practices strengthen resilience through improved moisture retention and fertility, while emission intensity declines through optimized fertilizer and irrigation use. Socio-economic benefits include lower production risks, reduced costs, and higher net farm incomes, supporting livelihood security. Policy support, institutional coordination, and capacity building accelerate adoption and scaling. Climate-smart farming aligns productivity growth with ecological sustainability, offering a robust framework for long-term food security under changing climatic conditions.

Keywords: *Climate-Smart Agriculture, Sustainable Food Production, Precision Farming, Resource-Use Efficiency*

1. Introduction to Climate-Smart Farming

Concept and objectives

Climate-smart farming integrates productivity enhancement, climate adaptation, and mitigation within agricultural systems. FAO defines it as an approach targeting ≥ 20 –30% yield stability under climate stress, 10–40% reduction in greenhouse gas emissions per unit output, and improved resource-use efficiency. Agriculture contributes nearly 21% of global anthropogenic GHG emissions, making climate-responsive practices essential. Core objectives include enhancing resilience to temperature rise projected at 1.5–2.0 °C by mid-century, optimizing water-use efficiency by 25–50%, and sustaining soil organic carbon stocks above 1.5–2.0%.

Linkage with sustainable food production

Climate-smart farming supports sustainable

food production by aligning yield growth with ecological balance. Global food demand is projected to rise by ~60% by 2050, while arable land expansion remains below 5%. Practices such as conservation tillage can reduce soil erosion by 60–90%, integrated nutrient management improves nutrient-use efficiency by 20–35%, and diversified cropping systems enhance system productivity by 10–25%. These linkages strengthen food availability, stability, access, and utilization under increasing climate variability.

2. Core Climate-Smart Farming Practices

Climate-resilient crop varieties

Climate-resilient varieties are bred for tolerance to drought, heat, salinity, submergence, and pest pressure. Stress-tolerant rice, wheat, and maize lines show 15–35% higher yields under abiotic stress and reduce

crop failure risk by nearly 30%. Early-maturing cultivars shorten crop duration by 10–20 days, lowering exposure to terminal heat and drought. Biofortified and hybrid varieties improve nutrient uptake efficiency by 12–25% and enhance grain protein or micronutrient content, supporting both productivity and nutritional security under variable climatic conditions.

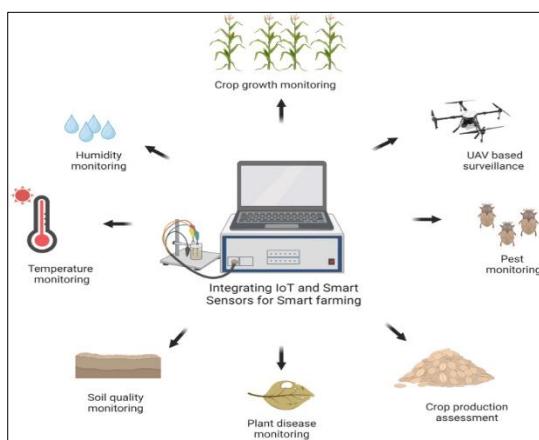
Resource-efficient water and nutrient management

Efficient water and nutrient use underpins climate-smart systems by reducing input losses and emissions. Micro-irrigation systems increase water-use efficiency by 30–60% and raise yields by 10–25%. Precision nutrient application through soil testing and sensor-based scheduling improves fertilizer-use efficiency by 20–40% and cuts nitrous oxide emissions by nearly 15–25%. Conservation practices maintaining soil organic carbon above 1.5% enhance moisture retention by 20–30%, stabilizing yields during rainfall variability.

Table: Core Climate-Smart Farming Practices

Practice Category	Key Interventions	Quantified Benefits	Sustainability Outcomes
Climate-resilient crop varieties	Drought-, heat-, salinity-, flood-tolerant cultivars; early maturity	15–35% higher yields under stress; 25–30% lower crop failure risk	Yield stability; nutritional security
Efficient water management	Drip and sprinkler irrigation; soil-moisture scheduling	30–60% water savings; 10–25% yield gains	Water conservation; energy efficiency
Precision nutrient management	Soil testing; variable-rate fertilization; fertigation	20–40% fertilizer-use efficiency; 15–25% lower N ₂ O emissions	Reduced pollution; cost savings
Soil health management	Conservation tillage; residue retention; cover crops	0.3–1.0 t C ha ⁻¹ yr ⁻¹ sequestration; 20–30% higher moisture retention	Carbon storage; resilience
Cropping system diversification	Intercropping; rotations; agroforestry	10–25% system productivity increase; income risk reduction	Biodiversity; livelihood stability
Digital decision tools	Sensors; drones; satellite analytics	15–45% input optimization; ~20% loss reduction	Adaptive management; efficiency

3. Technological and Digital Interventions


Precision agriculture and smart sensors

Precision agriculture applies site-specific management using GPS, IoT, and remote sensing. Variable-rate input application improves fertilizer-use efficiency by 15–30% and reduces input costs by 10–20%. Soil-moisture, canopy, and nutrient sensors enable real-time monitoring, raising water-use efficiency by 25–45% and stabilizing yields

under rainfall variability. Drone and satellite-based crop diagnostics detect stress at early stages, lowering yield losses by nearly 20% and improving farm energy efficiency through optimized field operations.

Weather-based advisory and decision-support systems

Weather-driven advisories translate short- and medium-range forecasts into actionable farm decisions. Forecast-based sowing and irrigation

scheduling reduces climate-related yield risk by 15–25% and lowers irrigation demand by nearly 20%. Digital decision-support platforms integrating crop models and climate data enhance input timing accuracy, increasing productivity by 8–18%. Early warning systems for heat waves, droughts, and extreme rainfall strengthen adaptive capacity and support consistent food production under increasing climate variability.

4. Environmental and Socio-Economic Impacts

Productivity, resilience, and emission reduction
 Climate-smart practices enhance system productivity while lowering environmental footprints. Integrated crop and resource management raises yields by 10–30% and reduces year-to-year yield variability by nearly 20–40%. Soil carbon-building practices sequester $0.3\text{--}1.0\text{ t C ha}^{-1}\text{ yr}^{-1}$, contributing to long-term fertility and resilience. Optimized fertilizer and water use lowers methane and nitrous oxide emissions by 15–35%, supporting emission-intensity reduction per unit of food produced.

Livelihood security and farm profitability
 Socio-economic gains emerge through cost efficiency and risk reduction. Input savings from precision inputs and efficient irrigation range between 15–30%, improving net farm income by 20–40%. Yield stability under Agrimonti, C., Lauro, M., & Visioli, G. (2021). Smart agriculture for food quality: facing climate change in the 21st century. *Critical*

climatic stress lowers income volatility by nearly one-third. Diversified farming systems integrating crops, livestock, or agroforestry improve household income streams and employment, strengthening food security and economic resilience for farming communities.

5. Future and Policy Support

Scaling strategies and capacity building
 Scaling climate-smart farming depends on knowledge transfer, infrastructure, and innovation diffusion. Farmer training and digital extension improve technology adoption rates by 25–40% and raise input-use efficiency by nearly 20%. Public–private partnerships accelerate access to climate-resilient seeds and smart irrigation, reducing adoption costs by 15–30%. Community-based models and farmer producer organizations enhance collective bargaining and market access, improving price realization by 10–25% while strengthening adaptive capacity.

Policy and institutional support

Supportive policy frameworks enable long-term adoption and impact. Incentives for water-efficient irrigation and low-emission practices cut production risk and enhance investment returns. Climate-aligned agricultural policies linked with carbon markets and ecosystem service payments create income streams valued at USD $20\text{--}40\text{ ha}^{-1}\text{ yr}^{-1}$. Strong institutional coordination among research, extension, and finance systems shortens technology dissemination cycles and sustains climate-resilient food production pathways.

Conclusion

Climate-smart farming integrates resilient technologies, efficient resource use, and supportive policies to enhance productivity, reduce emissions, and stabilize farm incomes. Its adoption strengthens adaptive capacity and ensures sustainable food production under increasing climate variability.

Reference

reviews in food science and nutrition, 61(6), 971–981.

De Pinto, A., Cenacchi, N., Kwon, H. Y., Koo, J., & Dunston, S. (2020). Climate smart agriculture and global food-crop production. *PloS one*, 15(4), e0231764.

Ghosh, M. (2019). Climate-smart agriculture, productivity and food security in India. *Journal of Development Policy and Practice*, 4(2), 166-187.

Kabato, W., Getnet, G. T., Sinore, T., Nemeth, A., & Molnár, Z. (2025). Towards climate-smart agriculture: Strategies for sustainable agricultural production, food security, and greenhouse gas reduction. *Agronomy*, 15(3), 565.

Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... & Torquebiau, E. F. (2014). Climate-smart agriculture for food security. *Nature climate change*, 4(12), 1068-1072.

<https://futureagriculture.co.in/>

Singh, R., & Singh, G. S. (2017). Traditional agriculture: a climate-smart approach for sustainable food production. *Energy, Ecology and Environment*, 2(5), 296-316.

Vatsa, P., Ma, W., Zheng, H., & Li, J. (2023). Climate-smart agricultural practices for promoting sustainable agrifood production: yield impacts and implications for food security. *Food Policy*, 121, 102551.

Vatsa, P., Ma, W., Zheng, H., & Li, J. (2023). Climate-smart agricultural practices for promoting sustainable agrifood production: yield impacts and implications for food security. *Food Policy*, 121, 102551.

Wakweya, R. B. (2023). Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. *Journal of Agriculture and Food Research*, 14, 100698.