

Climate-Resilient Crop Varieties for the Future

Akula Sai Harini^{*1} and Darshini Mahesh Pujar²

¹Associate Professor, Genetics and Plant Breeding Department, School of Agricultural Sciences, Malla Reddy University

²Assistant Professor, Genetics and Plant Breeding Department, School of Agricultural Sciences, Malla Reddy University

***Corresponding Author Email:** drsaiharini@mallareddyuniversity.ac.in

Abstract

Climate change poses serious challenges to agricultural productivity through rising temperatures, erratic rainfall, and frequent extreme events. Climate-resilient crop varieties have emerged as a critical adaptation strategy to sustain yield stability and food security under such conditions. These varieties integrate traits such as heat tolerance, drought adaptability, efficient water use, and resistance to pests and diseases. Advances in conventional breeding, marker-assisted selection, genetic engineering, and genome-editing tools have accelerated the development of resilient cultivars, reducing yield losses and production risks. Adoption of climate-resilient varieties has demonstrated higher yield stability, lower input requirements, and improved economic returns across diverse farming systems. Supportive policy frameworks, focused research investments, and efficient seed dissemination mechanisms are essential for scaling these innovations. Strengthening collaboration among researchers, policymakers, and farming communities will play a decisive role in building climate-adaptive and sustainable agricultural systems.

Keywords: *Climate resilience, Crop breeding, Yield stability, Abiotic stress tolerance, Biotic*

1. Climate Change and Agricultural Vulnerability

Rising temperature, erratic rainfall, and extreme events

Global mean surface temperature has already increased by about 1.1 °C above pre-industrial levels, with agriculture experiencing amplified heat stress during critical crop growth stages. Frequency of heatwaves has doubled since the 1980s, while rainfall patterns show higher variability, marked by shorter intense precipitation events and prolonged dry spells. Extreme events such as droughts, floods, and cyclones now account for nearly 70 % of climate-related agricultural losses worldwide, directly affecting soil moisture

regimes, crop phenology, and nutrient dynamics.

Implications for crop productivity and food security

Yield reductions of major cereals under combined heat and water stress range between 10–25 % per degree Celsius rise in temperature, as reported by multi-model assessments. Climate variability increases year-to-year yield instability, weakening supply chains and farm incomes. Projections indicate that without adaptive interventions, global food production could decline by 8–14 % by mid-century, while demand is expected to rise by over 50 %, intensifying pressure on food availability, accessibility, and nutritional security.

2. Concept of Climate-Resilient Crop Varieties

Definition and key resilience traits

Climate-resilient crop varieties are genetically improved cultivars designed to maintain stable yield and quality under climate-induced stresses. Core resilience traits include heat tolerance at flowering, drought-adaptive root architecture, efficient water-use efficiency, early vigor, and phenological plasticity. Studies indicate that varieties combining multiple adaptive traits can reduce yield losses by 20–40 % under stress scenarios compared with conventional cultivars. Improved *Conventional breeding and marker-assisted selection*

Conventional breeding exploits existing genetic variability through hybridization, selection, and multi-environment testing to develop climate-resilient cultivars. Yield gains from stress-tolerant breeding lines range between 0.5–1.2 % per year under marginal environments. Marker-assisted selection accelerates this process by linking phenotypic traits with molecular markers, reducing breeding cycles by 30–50 %. Deployment of quantitative trait loci associated with drought tolerance, submergence survival, and heat resilience has improved yield stability by nearly 20 % under stress-prone conditions.

photosynthetic efficiency, stay-green character, and enhanced carbon assimilation also contribute to yield stability under variable environments.

Tolerance to biotic and abiotic stresses

Abiotic stress tolerance targets drought, heat, salinity, and flooding, which collectively account for over 50 % of global crop yield losses. Heat-tolerant cereals show reduced spikelet sterility and improved grain filling at temperatures exceeding 35 °C. Drought-tolerant genotypes demonstrate deeper rooting and osmotic adjustment, sustaining productivity under limited moisture. Biotic stress tolerance focuses on resistance to insects, pathogens, and emerging pest complexes intensified by climate shifts. Resistant varieties have been shown to lower crop losses by 15–30 % while reducing pesticide dependence, supporting sustainable production systems.

3. Breeding and Biotechnological Approaches

Genetic engineering and genome-editing tools

Genetic engineering enables precise introduction of stress-responsive genes regulating osmotic balance, heat-shock proteins, and antioxidant pathways. Transgenic crops expressing drought- and salinity-tolerance genes have recorded biomass and yield improvements of 15–35 % under controlled and field stress conditions. Genome-editing tools such as CRISPR/Cas systems allow targeted modification of endogenous genes without altering overall genetic background. Edited lines show enhanced stress tolerance, improved nutrient-use efficiency, and faster trait development timelines compared with conventional approaches.

Table: Climate-Resilient Crop Varieties

Crop Variety Type	Example Varieties	Key Resilience Traits	Primary Climate Stress Addressed	Performance Advantages
Drought-tolerant varieties	<i>Sahbhagi Dhan (rice)</i> , <i>DT maize hybrids</i>	Deep rooting, osmotic regulation	Prolonged dry spells	20–30 % higher yield under moisture stress
Heat-tolerant varieties	<i>HD 2967 (wheat)</i> , <i>HeatSmart maize</i>	Heat-stable enzymes, pollen viability	High temperature during flowering	Reduced yield loss above 35 °C
Flood-tolerant varieties	<i>Swarna-Sub1 (rice)</i> , <i>IR64-Sub1</i>	Submergence tolerance gene (SUB1)	Temporary flooding	Survival up to 14 days submergence
Salinity-tolerant varieties	<i>CSR 36 (rice)</i> , <i>Kharchia 65 (wheat)</i>	Ion exclusion, salt compartmentalization	Saline soils and water	25–40 % yield advantage on saline land
Pest-resistant varieties	<i>Bt cotton hybrids</i>	Inbuilt insect resistance	Climate-driven insect outbreaks	15–30 % reduction in crop loss
Disease-resistant varieties	<i>Pusa Basmati 1121 (blast-tolerant lines)</i>	Durable resistance genes	Pathogen pressure	Lower fungicide requirement
Early-maturing varieties	<i>ICPL 88039 (pigeonpea)</i>	Short growth duration	Terminal drought and heat	Stress escape, yield stability
Multi-stress resilient varieties	<i>DRR Dhan 44 (rice)</i>	Combined abiotic-biotic tolerance	Concurrent climate extremes	Stable yield across variable seasons

4. Adoption and Performance in Farming Systems

Yield stability under climate stress conditions

Climate-resilient crop varieties

demonstrate superior yield stability across variable environments marked by heat, drought, and irregular rainfall. Field evaluations show that stress-tolerant cultivars sustain 15–30 % higher yields

than conventional varieties during drought years and reduce year-to-year yield variability by nearly 25 %. Improved harvest index, stable grain filling under thermal stress, and resilience to short-term flooding contribute to consistent performance, strengthening production reliability under increasing climate uncertainty.

Farmer acceptance and socio-economic benefits

Farmer adoption is strongly linked to visible yield gains, reduced risk, and lower input dependency. Surveys indicate adoption rates of resilient varieties increase by over 40 % when yield advantages exceed 10 % under stress conditions. Reduced crop failure risk enhances income stability, while tolerance to pests and diseases lowers pesticide use by 20–30 %, decreasing production costs. These benefits collectively improve benefit–cost ratios and support livelihood resilience across diverse farming systems.

5. Future and Policy Support

Research priorities and innovation pathways

Future research emphasizes stacking multiple stress-tolerance traits within single cultivars to address simultaneous heat, drought, and biotic pressures. Integration of high-throughput phenotyping, climate modelling, and artificial intelligence shortens varietal development timelines by up to 40 %. Exploration of wild relatives and landraces expands the genetic base, with studies showing a 15–25 % improvement in stress adaptability when novel alleles are incorporated. Focus on nutrient-use efficiency and carbon-efficient cultivars also supports sustainability goals.

Policy frameworks for scaling climate-resilient varieties

Effective policy support centres on

<https://futureagriculture.co.in/>

accelerated varietal release systems, seed multiplication infrastructure, and targeted incentive mechanisms. Streamlined regulatory pathways reduce adoption lag by several years, while public–private partnerships improve seed availability at scale. Investment in extension services and digital advisory platforms enhances awareness and adoption, raising dissemination efficiency by nearly 30 %. Long-term policy alignment with climate adaptation strategies strengthens food system resilience and agricultural sustainability.

Conclusion

Climate-resilient crop varieties offer stable yields, reduced climate risk, and improved farm incomes. Strategic breeding innovation, supportive policies, and efficient dissemination together ensure sustainable food production under increasing climate variability.

References

Banga, S. S., & Kang, M. S. (2014). Developing climate-resilient crops. *Journal of Crop Improvement*, 28(1), 57-87.

Hafeez, U., Ali, M., Hassan, S. M., Akram, M. A., & Zafar, A. (2023). Advances in breeding and engineering climate-resilient crops: a comprehensive review. *International Journal of Research and Advances in Agricultural Sciences*, 2(2), 85-99.

Joshua, S. C., Singh, B. K., Rao, D., Kumar, A., & Choudhary, R. Adopting Climate-Resilient Crop Varieties: A Key to Ensuring Food Security. In *Biotechnology of Climate-Smart Agriculture in Food Security and Sustainable Farming* (pp. 15-34). CRC Press.

Karri, V., & Nalluri, N. (2024). Enhancing resilience to climate change through

prospective strategies for climate-resilient agriculture to improve crop yield and food security. *Plant Science Today*, 11(1), 21-33.

Kissoudis, C., Van De Wiel, C., Visser, R. G., & Van Der Linden, G. (2016). Future-proof crops: challenges and strategies for climate resilience improvement. *Current Opinion in Plant Biology*, 30, 47-56.

Prabhu, K. R., Kumar, A., Yumkhaibam, R. S., Janeja, H. S., Krishna, B., & Talekar, N. (2023). A review on conventional and modern breeding approaches for developing climate resilient crop varieties. *Journal of Applied & Natural Science*, 15(3).

Shukla, S., Chaudhary, K., Phutela, S., Bhutani, R., & Shukla, S. K. (2025). Smart crop varieties and Precision agriculture: a way ahead for climate-resilient sustainable agriculture. In *Climate Change and Agricultural Ecosystems* (pp. 435-466). Woodhead Publishing.

Yadava, D. K., Singh, R. K., Patel, V. B., Sharma, T. R., Singh, S. K., Pandey, S., ... & Pathak, H. (2025). Climate Resilient Crop Varieties: Mainstreaming to Improve Yield and Moderate Farmers' Risk. *Anthropocene Science*, 1-34.